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Introduction
• Multitasking

– Concept	of	overlapping	the	computation	of	a	program	with	
another	one

– Central	to	modern	operating	systems

• Programming	languages	explore	multitasking	by	the	use	of	
processes,	threads or	tasks

• Scheduler	decides	which	program	to	run
– Common	tools:	Priority,	Time	slicing
– Common	goals:	Fairness,	Response	time	(low	latency),	Maximal	

system	utilisation (high	throughput),	Real-time	guarantees,	…
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Introduction
• Traditionally,	the	world	parallel is	used	for	systems	in	which	

executions	of	several	programs	overlap in	time	by	running	
them	on	separate	processors

• The	word	concurrent is	reserved	for	potential parallelism,	
in	which	executions	may,	but	need	not,	overlap

• Concurrent	programming	applies	to	systems	with	or	
without	multiple	processors

• Parallel	programming	applies	only	to	systems	with	multiple	
processors
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Introduction

• Concurrency	– aspect	of	the	problem domain

• Parallelism	– aspect	of	the	solution domain

• Both	go	beyond	the	traditional	sequential	
model	in	which	things	happen	one	at	a	time,	
one	after	another
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Concurrent	programming
• It	is	difficult	to	implement	safe and	efficient
synchronisation and	communication	in	concurrent	
programs

• Correctness	for	sequential	programs
– Partial	correctness – if	a	program	P	halts,	the	answer	is	
“correct”

– Total	correctness – a	program	P	does	halt	and	the	answer	
is	“correct”

• This	deals	with	correctness	of	computing	a	functional	
result
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Concurrent	programming
• Concurrent	programs	often	do	not	halt

• Correctness	of	(non-terminating)	concurrent	programs	
deal	with	properties	of	computation
– Safety	properties – something	bad	never	happens	(the	
program	never	enters	an	unacceptable	state)

– Liveness	properties – something	good	eventually	happens	
(the	program	eventually	enters	a	desirable	state)

• Concurrent	programs	must	satisfy	the	liveness	
properties	without	violating	the	safety	properties
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Challenge

• The	need	to	synchronise the	execution	of	
different	processes	and	to	enable	them	to	
communicate
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Preemptive	scheduling
• Preemption	is	the	act	of	temporarily	interrupting	the	
current	process,	without	requiring	its	cooperation,	and	
with	the	intention	of	resuming	the	process	at	a	later	
time
– Involves	the	use	of	an	interrupt	mechanism which	
suspends	the	currently	executing	process	and	invokes	the	
scheduler	to	determine	which	process	should	execute	next

• Today,	nearly	all	operating	systems	support	preemptive	
scheduling
– This	includes	the	current	versions	of	Windows,	Mac	OS,	
Linux,	iOS and	Android
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When	does	scheduling	happens?
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Priority-based	scheduling	issues

• Starvation

• Deadlock

• Livelock

• Priority	inversion
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Starvation

• Processes	with	lower	priorities	may	not	be	
given	the	opportunity	to	run (or	access	some	
other	resource)

• A	high	priority	process	P1 will	always	run	
before	a	low	priority	process	P2

• If	P1 never	blocks,	P2 will (in	some	systems)	
never	be	scheduled	
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Starvation

• Starvation	is	usually	caused	by	an	overly	
simplistic	scheduling	algorithm

• A	scheduler	should	allocate	resources	so	that	no	
process	perpetually	lacks	necessary	resources
– Modern	scheduling	algorithms	normally	guarantee	
that	all	processes	will	receive	a	minimum	amount	of	
each	important	resource	(most	often	CPU	time)
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Avoiding	starvation

• One	common	solution	is	aging
– One	parameter	to	priority	assignment	is	the	
amount	of	time	the	process	has	been	waiting

• The	longer	a	process	waits, the	higher	its	
priority	becomes
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Resource	sharing
• In	most	systems,	processes	share	resources
apart	from	the	processor
– Memory	areas, Files, Network,	…

• Synchnronisation mechanisms	(semaphores,	
locks,	…) are	used	to	manage	shared	resources
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The	need	for	synchronisation
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The	need	for	synchronisation

• Now,	before	they	can	access	or	update	an	account	
balance,	cash	machines	must	first	acquire	the	lock	on	
that	account
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Resource	sharing
Process Execution time Priority Arrival instant Execution sequence

P1 5 1 1 E E R1 R1 R1

P2 5 2 5 E E E E R2 R2

P3 7 3 0 R1 R1 R1 E R2 R2 E

E	E
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Request	lock

R1 Release

R1R1R1

E		E		E		E		R2		R2

Request	lock

E		R2	R2 E

Release

Request	lock
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Deadlock

• A condition	involving	one	or	more	processes	
and	one	or	more	resources,	such	that	each	
process	waits	for	one	of	the	resources,	but	all	
the	resources	are	already	held
– Therefore,	none	of	the	processes	can	continue

• The	most	common	example	is	with	two	
processes	and	two	resources
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Avoiding	deadlocks

• Start	with	a coarse-grained	approach,	identify	
bottlenecks,	and	add	finer-grained	locking	where	
necessary	to	alleviate	the	bottlenecks
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Avoiding	deadlocks
• Implement	lock	ordering when	using	multiple	locks

– Nested	locks	must	always	be	obtained	in	the	same	order	
(not	always	easy	in	practice)

void	transferMoney(Account	*fromAccount,	Account	
*toAccount,	float	amountToTransfer){

sem_wait(fromAccount->lock);
sem_wait(toAccount->lock);
debit(fromAccount,amountToTransfer);
credit(toAccount,amountToTransfer);
sem_post(fromAccount->lock);
sem_post(toAccount->lock);

}
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Problem
• Suppose	A	and	B	are	making	simultaneous	
transfers	between	two	accounts	in	opposite	
directions (A:	C1 à C2;	B:	C2 à C1)
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Possible	solution

• Impose	a	maximum	waiting	time for	acquiring	
the	lock…
– In	POSIX,	sem_trywait() and sem_timedwait()

• … and	try	again	later
– New	attempt	is	usually	done	after	a	random	
waiting	period,	but	several	approaches	are	
possible
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Livelock

• Similar	to	a	deadlock,	except	that	the	states	of	
the	processes	involved	in	the	livelock constantly	
change	with	regard	to	one	another,	none	
progressing

• Livelock is	a	risk	with	some	algorithms	that	detect	
and	recover	from	deadlock
– If	more	than	one	process	takes	action,	the	deadlock	
detection	algorithm	can	be	repeatedly	triggered
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Livelock
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Priority	inversion

• When	a	higher	priority	process	is	indirectly	
preempted	by	a	lower	priority	one,	effectively	
"inverting"	the	relative	priorities	of	the	two	
processes

• This	violates	the	priority	model
– High	priority	tasks	can	only	be	prevented	from	
running	by	higher	priority	tasks
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Priority	inversion
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A higher priority process (P1) waits for a lower priority process
(P3) while middle priority processes are allowed to execute
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Priority	inversion
• If	no	rule	is	applied	when	sharing	resources,	it	is	
impossible	to	determine	the	maximum	blocking	time
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Avoiding	priority	inversion

• Allow	low	priority	processes	to	quickly	
complete	their	use	of	a	shared	resource

• Two	main	protocols
– Priority	Inheritance	Protocol
– Priority	Ceiling	Protocol
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Priority	Inheritance	Protocol

• When	a	higher	priority	process	is	blocked	in	a	shared	
resource,	the	lower	priority	process	using	the	
resource	“inherits”	the	higher	priority (only	when	
using)

• Allows	several	blocking	periods	but	guarantees	
a	maximum	blocking	period
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Priority	Inheritance	Protocol
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Priority	Inheritance	Protocol
• If	a	process	has	m critical	sections	that	can	lead	
to	it	being	blocked,	then	the	maximum	number	of	
times	it	can	be	blocked	is	m

• If	B is	the	maximum	blocking	time	and	K is	the	
number	of	critical	sections,	process	i has	an	
upper	bound	on	its	blocking	given	by:

å=
=

K

k
i kCikusageB

1
)(),(



33

Priority	Inheritance	Protocol

• Blocking	is	zero	for	the	lowest	priority	process

• usage(k,i) is	one	if resource	K	is	used	by	any	
process	with	equal	or	higher	priority (or	by	i
itself)	than	process	i AND	by	any lower	priority	
process

• Otherwise,	usage(k,i) is	zero
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Priority	Ceiling	Protocol

• Resources	are	given	a	priority	which	is	equal	to	the	
highest	priority	of	the	processes	that	use	the	
resource (ceiling)

• When	holding	the	resource,	processes	execute	
with	the	priority	of	the	resource (ceiling)

• Allows	only	one	blocking	period	(but	introduces	
unnecessary	blocking)	
– Also	prevents	deadlocks
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Priority	Ceiling	Protocol

0 5 10 15 20

P3 executes	with	the	priority	of	R1
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E	R2 R2 EThe	only	problem	is	that	P3 blocks	P2
even	if	it	was	not	necessary
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Priority	Ceiling	Protocol

• As	a	consequence,	a	process	will	only	suffer	a	
block	at	the	very	beginning	of	its	execution
– Once	the	process	starts	actually	executing,	all	the	
resources	it	needs	must	be	free

– If	they	were	not,	then	some	process	would	have	
an	equal	or	higher	priority	and	the	process's	
execution	would	be	postponed
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Response	time	with	blocking
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Conclusions

• Resource	starvation,	deadlock,	livelock,	and	
priority	inversion	are	problems	that	all	
programmers	of	concurrent	solutions	must	
know	and	master

• They	might	not	be	obvious	and	occur	in	rare	
and	unpredictable	ways,	imposing	serious	
problems	to	applications
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Conclusions

• By	dedicating	a	higher	degree	of	attention	in	the	
design	of	the	synchronisation solution and	
imposing	clear	rules of	when	and	how	to	lock	
more	than	one	resource,	problems	can	be	greatly	
reduced

• One	critical	aspect	– ignored	many	times	– is	the	
documentation of	the	synchronisation solution,	
even	in	cases	when	a	huge	attention	is	dedicated	
to	its	design


