
1

Concurrent	Programming	–
Synchronisation

CISTER	Summer	Internship	2017	

Luís	Nogueira lmn@isep.ipp.pt



2

Introduction
• Multitasking

– Concept	of	overlapping	the	computation	of	a	program	with	
another	one

– Central	to	modern	operating	systems

• Programming	languages	explore	multitasking	by	the	use	of	
processes,	threads or	tasks

• Scheduler	decides	which	program	to	run
– Common	tools:	Priority,	Time	slicing
– Common	goals:	Fairness,	Response	time	(low	latency),	Maximal	

system	utilisation (high	throughput),	Real-time	guarantees,	…



3

Introduction
• Traditionally,	the	world	parallel is	used	for	systems	in	which	

executions	of	several	programs	overlap in	time	by	running	
them	on	separate	processors

• The	word	concurrent is	reserved	for	potential parallelism,	
in	which	executions	may,	but	need	not,	overlap

• Concurrent	programming	applies	to	systems	with	or	
without	multiple	processors

• Parallel	programming	applies	only	to	systems	with	multiple	
processors



4

Introduction

• Concurrency	– aspect	of	the	problem domain

• Parallelism	– aspect	of	the	solution domain

• Both	go	beyond	the	traditional	sequential	
model	in	which	things	happen	one	at	a	time,	
one	after	another



5

Concurrent	programming
• It	is	difficult	to	implement	safe and	efficient
synchronisation and	communication	in	concurrent	
programs

• Correctness	for	sequential	programs
– Partial	correctness – if	a	program	P	halts,	the	answer	is	
“correct”

– Total	correctness – a	program	P	does	halt	and	the	answer	
is	“correct”

• This	deals	with	correctness	of	computing	a	functional	
result



6

Concurrent	programming
• Concurrent	programs	often	do	not	halt

• Correctness	of	(non-terminating)	concurrent	programs	
deal	with	properties	of	computation
– Safety	properties – something	bad	never	happens	(the	
program	never	enters	an	unacceptable	state)

– Liveness	properties – something	good	eventually	happens	
(the	program	eventually	enters	a	desirable	state)

• Concurrent	programs	must	satisfy	the	liveness	
properties	without	violating	the	safety	properties



7

Challenge

• The	need	to	synchronise the	execution	of	
different	processes	and	to	enable	them	to	
communicate



8

Preemptive	scheduling
• Preemption	is	the	act	of	temporarily	interrupting	the	
current	process,	without	requiring	its	cooperation,	and	
with	the	intention	of	resuming	the	process	at	a	later	
time
– Involves	the	use	of	an	interrupt	mechanism which	
suspends	the	currently	executing	process	and	invokes	the	
scheduler	to	determine	which	process	should	execute	next

• Today,	nearly	all	operating	systems	support	preemptive	
scheduling
– This	includes	the	current	versions	of	Windows,	Mac	OS,	
Linux,	iOS and	Android



9

When	does	scheduling	happens?



10

Priority-based	scheduling	issues

• Starvation

• Deadlock

• Livelock

• Priority	inversion



11

Starvation

• Processes	with	lower	priorities	may	not	be	
given	the	opportunity	to	run (or	access	some	
other	resource)

• A	high	priority	process	P1 will	always	run	
before	a	low	priority	process	P2

• If	P1 never	blocks,	P2 will (in	some	systems)	
never	be	scheduled	



12

Starvation

• Starvation	is	usually	caused	by	an	overly	
simplistic	scheduling	algorithm

• A	scheduler	should	allocate	resources	so	that	no	
process	perpetually	lacks	necessary	resources
– Modern	scheduling	algorithms	normally	guarantee	
that	all	processes	will	receive	a	minimum	amount	of	
each	important	resource	(most	often	CPU	time)



13

Avoiding	starvation

• One	common	solution	is	aging
– One	parameter	to	priority	assignment	is	the	
amount	of	time	the	process	has	been	waiting

• The	longer	a	process	waits, the	higher	its	
priority	becomes



14

Resource	sharing
• In	most	systems,	processes	share	resources
apart	from	the	processor
– Memory	areas, Files, Network,	…

• Synchnronisation mechanisms	(semaphores,	
locks,	…) are	used	to	manage	shared	resources



15

The	need	for	synchronisation



16

The	need	for	synchronisation

• Now,	before	they	can	access	or	update	an	account	
balance,	cash	machines	must	first	acquire	the	lock	on	
that	account



17

Resource	sharing
Process Execution time Priority Arrival instant Execution sequence

P1 5 1 1 E E R1 R1 R1

P2 5 2 5 E E E E R2 R2

P3 7 3 0 R1 R1 R1 E R2 R2 E

E	E

0 5 10 15 20

R1R1P3

P2

P1

Request	lock

R1 Release

R1R1R1

E		E		E		E		R2		R2

Request	lock

E		R2	R2 E

Release

Request	lock



18

Deadlock

• A condition	involving	one	or	more	processes	
and	one	or	more	resources,	such	that	each	
process	waits	for	one	of	the	resources,	but	all	
the	resources	are	already	held
– Therefore,	none	of	the	processes	can	continue

• The	most	common	example	is	with	two	
processes	and	two	resources



19

Deadlock

Process	
1

Process	
2

Resource	
1

Resource	
2

Locks

Locks

Requests

Requests

1

2

3

4

wait

wait



20

Avoiding	deadlocks

• Start	with	a coarse-grained	approach,	identify	
bottlenecks,	and	add	finer-grained	locking	where	
necessary	to	alleviate	the	bottlenecks



21

Avoiding	deadlocks
• Implement	lock	ordering when	using	multiple	locks

– Nested	locks	must	always	be	obtained	in	the	same	order	
(not	always	easy	in	practice)

void	transferMoney(Account	*fromAccount,	Account	
*toAccount,	float	amountToTransfer){

sem_wait(fromAccount->lock);
sem_wait(toAccount->lock);
debit(fromAccount,amountToTransfer);
credit(toAccount,amountToTransfer);
sem_post(fromAccount->lock);
sem_post(toAccount->lock);

}



22

Problem
• Suppose	A	and	B	are	making	simultaneous	
transfers	between	two	accounts	in	opposite	
directions (A:	C1 à C2;	B:	C2 à C1)



23

Possible	solution

• Impose	a	maximum	waiting	time for	acquiring	
the	lock…
– In	POSIX,	sem_trywait() and sem_timedwait()

• … and	try	again	later
– New	attempt	is	usually	done	after	a	random	
waiting	period,	but	several	approaches	are	
possible



24

Livelock

• Similar	to	a	deadlock,	except	that	the	states	of	
the	processes	involved	in	the	livelock constantly	
change	with	regard	to	one	another,	none	
progressing

• Livelock is	a	risk	with	some	algorithms	that	detect	
and	recover	from	deadlock
– If	more	than	one	process	takes	action,	the	deadlock	
detection	algorithm	can	be	repeatedly	triggered



25

Livelock



26

Priority	inversion

• When	a	higher	priority	process	is	indirectly	
preempted	by	a	lower	priority	one,	effectively	
"inverting"	the	relative	priorities	of	the	two	
processes

• This	violates	the	priority	model
– High	priority	tasks	can	only	be	prevented	from	
running	by	higher	priority	tasks



27

Priority	inversion

P3

P2

P1 E	E

E

R1R1

E	E	E	R2R2 Release

R1

R1R1R1

E	R2 R2 E

A higher priority process (P1) waits for a lower priority process
(P3) while middle priority processes are allowed to execute

Process Execution time Priority Arrival instant Execution sequence

P1 5 1 3 E E R1 R1 R1

P2 5 2 2 E E E E R2 R2

P3 7 3 0 R1 R1 R1 E R2 R2 E

0 5 10 15 20



28

Priority	inversion
• If	no	rule	is	applied	when	sharing	resources,	it	is	
impossible	to	determine	the	maximum	blocking	time

E	E

E

0 5 10 15 20

R1R1P4

P2

P1

R1

R1R1R1

Priority Inversion

P3 E	E	E	E	E	E	E	E	E	E	E

25

E	E	E	R2R2



29

Avoiding	priority	inversion

• Allow	low	priority	processes	to	quickly	
complete	their	use	of	a	shared	resource

• Two	main	protocols
– Priority	Inheritance	Protocol
– Priority	Ceiling	Protocol



30

Priority	Inheritance	Protocol

• When	a	higher	priority	process	is	blocked	in	a	shared	
resource,	the	lower	priority	process	using	the	
resource	“inherits”	the	higher	priority (only	when	
using)

• Allows	several	blocking	periods	but	guarantees	
a	maximum	blocking	period



31

Priority	Inheritance	Protocol

E	E

E

0 5 10 15 20

R1R1P3

P2

P1

R1

P3 inherits	the priority	of	P1

R1R1R1
P2 no	longer blocks P1

E	E	E	R2R2

E	R2 R2 E



32

Priority	Inheritance	Protocol
• If	a	process	has	m critical	sections	that	can	lead	
to	it	being	blocked,	then	the	maximum	number	of	
times	it	can	be	blocked	is	m

• If	B is	the	maximum	blocking	time	and	K is	the	
number	of	critical	sections,	process	i has	an	
upper	bound	on	its	blocking	given	by:

å=
=

K

k
i kCikusageB

1
)(),(



33

Priority	Inheritance	Protocol

• Blocking	is	zero	for	the	lowest	priority	process

• usage(k,i) is	one	if resource	K	is	used	by	any	
process	with	equal	or	higher	priority (or	by	i
itself)	than	process	i AND	by	any lower	priority	
process

• Otherwise,	usage(k,i) is	zero



34

Priority	Ceiling	Protocol

• Resources	are	given	a	priority	which	is	equal	to	the	
highest	priority	of	the	processes	that	use	the	
resource (ceiling)

• When	holding	the	resource,	processes	execute	
with	the	priority	of	the	resource (ceiling)

• Allows	only	one	blocking	period	(but	introduces	
unnecessary	blocking)	
– Also	prevents	deadlocks



35

Priority	Ceiling	Protocol

0 5 10 15 20

P3 executes	with	the	priority	of	R1

P3

P2

P1

P2 does	not	execute	because	P3	
is	with	a	higher	priority

E	E	R1R1R1

R1R1R1

E	E	E	E	R2R2

E	R2 R2 EThe	only	problem	is	that	P3 blocks	P2
even	if	it	was	not	necessary



36

Priority	Ceiling	Protocol

• As	a	consequence,	a	process	will	only	suffer	a	
block	at	the	very	beginning	of	its	execution
– Once	the	process	starts	actually	executing,	all	the	
resources	it	needs	must	be	free

– If	they	were	not,	then	some	process	would	have	
an	equal	or	higher	priority	and	the	process's	
execution	would	be	postponed

)(),(max
1

kCikusageB
k

ki =
=



37

Response	time	with	blocking

iiii IBCR ++=

j
ihpj j

i
iii C

T
RBCR å

Î ú
ú
ú

ù

ê
ê
ê

é
++=

)(

j
ihpj

j

n
i

ii
n
i C

T
wBCw å ú
ú

ù
ê
ê

é
++=

Î

+

)(

1



38

Conclusions

• Resource	starvation,	deadlock,	livelock,	and	
priority	inversion	are	problems	that	all	
programmers	of	concurrent	solutions	must	
know	and	master

• They	might	not	be	obvious	and	occur	in	rare	
and	unpredictable	ways,	imposing	serious	
problems	to	applications



39

Conclusions

• By	dedicating	a	higher	degree	of	attention	in	the	
design	of	the	synchronisation solution and	
imposing	clear	rules of	when	and	how	to	lock	
more	than	one	resource,	problems	can	be	greatly	
reduced

• One	critical	aspect	– ignored	many	times	– is	the	
documentation of	the	synchronisation solution,	
even	in	cases	when	a	huge	attention	is	dedicated	
to	its	design


